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ABSTRAC

User decision-making concerning critical operations is very important to nuclear power plant (NPP)
safety. The NPP interface is the main information source that guides decision-making; thus, a good
interface design is essential. Among the interface design factors such as interface complexity, lay-
out and colour, interface complexity (the amount of information in the interface) has the greatest
impact on NPP operator decision-making. This paper used the event-related potential (ERP) to
evaluate the impact of interface complexity on user decision-making and found interface complex-
ity has a specific range suitable for decision-making. Based on this important finding, a fast and
economical method of evaluating NPP interfaces in all design phases was proposed. This method
compensates for the shortcomings of traditional methods, such as heuristic evaluation and experi-
mental evaluation, which are inconvenient for evaluating interfaces in initial design phase; it can
also be applied to interfaces with similar features in other industrial fields.

Practitioner summary: Evaluation of the impact of NPP interface complexity on user decision-
making through an ERP experiment revealed a specific range of interface complexity that
facilitates user decision-making. Based on this finding, a new, fast and inexpensive interface
evaluation method was proposed.

Abbreviations: NPP: nuclear power plant, it is a thermal power station in which the heat source
is a nuclear reactor; ERP: event-related potential, it is the measured brain response that is the
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direct result of a specific cognitive, or motor event.

1. Introduction

In modern nuclear power plants (NPPs), control systems
generally operate automatically; thus, the operator’s job
has changed from controlling to monitoring and deci-
sion-making (Hugo and Gertman 2016). Human deci-
sion-making is currently the main factor that affects the
safety of NPPs (Bohanec et al. 2020). Decision-making is
the process of evaluating and selecting an option from
different alternatives (Shukla, Auriol, and Hipel 2016). It
is affected by many factors, such as information, envir-
onment, and personality. For NPP operators, decision-
making is the process of selecting different feedback
operations based on the information obtained from the
interface. Since the environment of the main control
room is relatively stable and the operators have been
trained, interface information is the main uncontrollable
decision-making factor. The interface plays an import-
ant role in NPP safety, integrating almost all alarms and
other information. Poor interface information will lead

to incorrect judgements by the operator, resulting in
serious consequences.

Existing research on the relationship between inter-
faces and decision-making focuses on interface design
elements such as layout, colour and font (Starke and
Baber 2018; Oyibo and Vassileva 2020). The layout is
closely related to functional division and information
distribution and therefore has an impact on user deci-
sion-making. Among the various interface layouts,
such as vertical, horizontal, centre, and off-centre, the
vertical layout is more conducive to user decision-
making than the horizontal layout (Chen, Li, and
Jamieson 2018), and the centre layout is better than
the off-centre layout (Chen et al. 2021). Colour can
attract the user’s attention and affect the user's mood.
For example, research has found that the background
colour of a web page has an impact on user decision-
making. Cool colours are more conducive to user deci-
sion-making than warm colours (Cheng, Wu, and
Leiner 2019), and high saturation (blue) is more

CONTACT Chenggqi Xue @ ipd_xcq@seu.edu.cn @ School of Mechanical Engineering, Southeast University, Nanjing, China

© 2022 Informa UK Limited, trading as Taylor & Francis Group


http://crossmark.crossref.org/dialog/?doi=10.1080/00140139.2022.2134590&domain=pdf&date_stamp=2022-10-25
https://doi.org/10.1080/00140139.2022.2134590
http://www.tandfonline.com

2 W. TANG ET AL.

conducive to user decision-making than low saturation
(grey) (Westerman et al. 2012). The legibility of font
also influences the acquisition of information and is
closely related to user decision-making bias. Among
the various fonts used to present information on the
interface, prominent fonts and fonts that are difficult
to read can reduce user decision-making bias, thereby
facilitating decision-making (Shen and Urminsky 2013;
Korn et al. 2018; Diaz-Lago and Matute 2019).

The literature contains a large number of papers on
the relationship between digital interfaces and deci-
sion-making. However, the types of digital interfaces
are limited, mainly to web pages and personal com-
puter interfaces. NPP interfaces are special interfaces
that present a large amount of information as well as
multiple sources of information. Such interfaces are also
widely used in complex information systems such as
aeroplanes and ships, which require high safety and
efficiency. Unlike web pages and personal computer
interfaces, NPP interfaces have limited colour and lay-
out options, and interface design is restricted by safety
regulations. In addition, most studies have focussed on
the impact of local interface elements such as layout,
colour and font on decision-making, but research on
global design factors, such as interface complexity, is
lacking. Interface complexity refers to the overall
amount of information provided by an interface and is
considered to have a large impact on decision-making
concerning complex information system interfaces
(Maglic and Zec 2020). However, findings on the rela-
tionship between interface complexity and decision-
making are inconsistent. Some studies have reported
that interface complexity is negatively related to user
decision-making; that is, the lower the interface com-
plexity is, the better the user decision-making
(Petrovcic et al. 2018; Vincent et al. 2019; Guo et al.
2021). Others have found that interface complexity is
positively related to user decision-making; that is, the
more information the interface provides, the better the
user decision-making (Han, Xue, and Zhang 2017;
Lazard and King 2020). Regardless, interface complexity
that is too high or too low seems to be detrimental to
user decision-making. Further experimental evidence is

Until an accuracy rate
of approximately 96%

needed to determine whether a specific range of inter-
face complexity facilitates decision-making.

The aim of this paper was to evaluate the influence
of NPP interface complexity on user decision-making
and to experimentally determine the upper and lower
limits of interface complexity. Three interfaces with dif-
ferent interface complexity were designed based on
the process display interfaces of NPPs. User behavioural
and event-related potential (ERP) data were recorded
and analysed. The study focussed on determining
whether an interface complexity threshold affects deci-
sion-making. The insights provided will deepen current
understanding of the impact of interface complexity on
decision-making. Additionally, a practical motivation for
this study was to propose an evaluation method suit-
able for the initial design phase of an interface, which
is highly important for interface designers.

2. Methods

NPP operator decision-making involves rapid decisions
based on the operator’s interaction with the interface;
thus, a method with high temporal resolution was
needed. Electroencephalography (EEG) has natural
advantages. It has extremely high temporal resolution,
can assess responses triggered by events (event-
related potentials; ERP), and directly reflects changes
in the brain (Li et al. 2018; Zhang 2018; Changoluisa,
Varona, and De Borja Rodriguez 2020). Ba et al. (2016)
used ERP to study driver decision-making, and Meng
and Xiu (2018) used ERP to study risk-related decision-
making. The use of ERP is thus an effective research
method and was adopted in this study.

The overall design of the experiment is discussed
here. The experiment adopted a within-participants
design and consisted of two parts: familiarisation and
test phases. The participants were instructed to select
different feedback operations based on the information
provided by the interface. The detailed schedules of
each part are provided in detail later. The experimental
schedule for each participant is shown in Figure 1.

Decision-making tasks mainly elicit activity in the
frontal, temporal, and parietal lobes of the brain

20 mins is reached 3 mins 20 mins S mins 20 mins
Participant is
briefed and Familiarization Break Test Debrief participant [| Cleaning and finishing
prepared

Figure 1. Experimental schedule for each participant.
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Figure 2. Electrode placement layout.

(Ahmad et al. 2016; Sandor et al. 2018; Guidotti et al.
2019). Overall, activation is stronger in the left hemi-
sphere, though this depends on the type of decision-
making task employed (Ernst et al. 2004). Therefore, in
the present study, 7 electrodes in the left frontal lobe,
left temporal lobe and left parietal lobe at sites F7, F3,
FC5, T7, P7, CP5 and P3 were selected, as shown in
Figure 2. The EEG waveform changes within 200 ms
before initiation of the key press, the average visual
reaction time window (Collins, Abbott, and Richards
2011); in this manner, the waveform elicited during
the decision-making period could be examined. The
behavioural data included the accuracy rate (ACC) and
reaction time (RT), and the ERP data included the
amplitude and latency.

2.1. Participants

Since the experiment aimed to examine differences in
human decision-making depending on interface com-
plexity, prior experience with operating NPP interfaces
was not required. The lack of previous experience
operating NPP interfaces (i.e. naive participants) was
addressed during the familiarisation phase in which
each participant was allotted sufficient time to
become fully accustomed to the experimental NPP
interfaces (see ‘2.4 Procedure’). A total of 56 partici-
pants were enrolled in this experiment and their char-
acteristics are shown in Table 1.

2.2. Stimuli

The experimental stimuli were designed based on
the process display interfaces of NPPs. Interface
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Ground electrode

Reference electrode

Table 1. Participant characteristics.

Profile 56 Graduate students

Sex 34 Males, 22 females

Age Ranging from 21 to 30years old, with an average age
of 25 years

Handedness All right-handed

complexity can be measured in terms of image
entropy, which represents the average amount of
information provided in an image. Image entropy can
be expressed by the following formula:

L
H=—> pjlog,p;
i=1

where H is the image entropy, p; is the probability of
a certain grey level in the entire image, and L is the
total number of grey levels in the image. Interface
complexity can be measured by image entropy for
three reasons. First, the NPP interface was predesigned
and could not be created or closed by the user.
Second, the number of colours was limited, with gen-
erally no more than five colours, and the contrast
between colours was large enough for an image to
retain the grey level and its information after greyscale
processing. Third, the image was converted from a
graphic; thus, there was no noise, and each pixel was
independent. The general procedure for calculating
the image entropy of the interface is as follows: first,
the interface was converted into an 8-bit grey image
(reducing the calculation cost compared to that for
colourful images) and then the probability distribution
of the grey levels in the image and the image entropy
were calculated according to the formula.
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(a) Low complexity

Image entropy: 0.6971

(b) Moderate complexity
Image entropy: 1.0324

(c) High complexity
Image entropy: 1.3637

Figure 3. Experimental stimuli with varying levels of interface complexity.

Table 2. Eego mylab system parameters.

Amplifier size 160 x 205 x 22 mm
Cap electrodes 32
Input resistance 1GQ

Sampling frequency 16 kHz

Amplifier weight 5009

Electrode material Ag/AgCl

Input signal range 150 ~ 1000 mVPP
Interface USB, TTL

All stimuli were decolourised, and an intermediate
layout was adopted to prevent colour, layout and
other factors from interfering with the ERP waveform.
This approach was appropriate because the colour
information was converted into grey level information,
and the layout had little effect on the amount of inter-
face information. The interface complexity of the stim-
uli increased proportionally, with three levels of image
entropy, labelled low, moderate, and high complexity,
as shown in Figure 3. The resolution of each stimulus
was 1024 x 768 pixels.

2.3. Apparatus

The experiment was conducted in the Human Factors
Laboratory. The ERP equipment was the eego mylab
system (ANT Neuro, the Netherlands), and the system
parameters are shown in Table 2. The eego mylab sys-
tem included a laptop with eego recording and ana-
lysis software for ERP signal recording and analysis. A
desktop computer with E-Prime 2.0 software was used
for task presentation. The screen size of the desktop
computer was 23.8 inches, and the resolution was
1024 x 768 pixels.

2.4. Procedure

This research was approved by the clinical research
Independent Ethics Committee of Zhongda Hospital
affiliated with Southeast University (2021ZDSYLL201-
PO1). Participants received a briefing document
approximately three days before the experiment that
explained the purpose of the experiment, the tasks
to be performed and the scheduled timetable. Each
participant provided informed consent. In the first
step of the experiment, after participants entered the
laboratory on the day of the experiment, they
cleaned and dried their hair. Then, the experimenter
helped the participant put on the EEG cap and used
EEG gel to connect cap electrodes to the partici-
pant’s scalp. The impedance of each electrode was
kept below 5 kQ. The ground electrode was placed
at AFz, and the reference electrode was placed at
CPz, as shown in Figure 2. A sampling frequency of
1000Hz was used in the experiment. Next, partici-
pants placed their hands on the keyboard in a nat-
ural position and maintained a distance of 55-65cm
between their eyes and the monitor screen. In the
experiment, participants were instructed to avoid
unnecessary body movements, such as moving their



Desktop computer

Figure 4. The eego mylab system.

legs or head. The eego mylab system is shown in
Figure 4.

2.4.1. Familiarisation phase

In familiarisation phase of the experiment, participants
learned the correct key press operations for different
situations through feedback. Interfaces without abnor-
mal data required participants to press the space key,
while interfaces with abnormal data required partici-
pants to press number keys representing areas where
abnormal data were shown. Most importantly, in this
phase of the experiment, participants were asked to
emphasise both speed and accuracy to achieve the
speed-accuracy trade-off that is necessary for NPP
operator decision-making. Real-time feedback was pro-
vided on the ACC and RT of the participant during all
practice runs. When participants reached an ACC of
approximately 96% (Van Zon et al. 2020), they were
considered to be well trained. A flow chart of the
familiarisation phase is shown in Figure 5(a).

2.4.2. Test phase

In test phase, participants followed the instructions on
the screen. A total of 120 interfaces were displayed in
a random order, with each of the three image entropy
levels appearing 40 times. The stimuli were divided
into 4 blocks, and each block consisted of 30 trials. In
each trial, a fixation cross (4+) was presented at the
centre of the screen for 500 ms, and then an interface
appeared. The participant was instructed to observe
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Amplifier

the interface, make a decision as soon as possible and
press one of the corresponding keys, which were the
same keys used during the familiarisation phase.
Subsequently, the ACC of their decision was then
displayed for 500ms to provide feedback on their
speed-accuracy trade-off. E-prime software and eego
software simultaneously recorded the behavioural and
ERP data, respectively, throughout the experiment. A
flow chart of the test phase of the experiment is
shown in Figure 5(b).

After the experiment, participants answered ques-
tions about their experience and challenges encoun-
tered in the experiment. Each participant received a
gift in appreciation of their participation.

3. Results

All 56 participants reached the target ACC of 96% and
passed the familiarisation phase of the experiment,
but in the test phase, 2 participants were excluded
due to their obvious drift in ERP data. Thus, valid data
was obtained from a total of 54 participants.

3.1. Behavioural data

Behavioural data included the ACC and RT of partici-
pants’ decision-making outcomes. The ACC was calcu-
lated as the ratio of the number of trials with correct
keystrokes to the total number of trials. The RT was
defined as the average duration between the appear-
ance of the image to the time when a key was
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Practice until an accuracy rate of
approximately 96% is achieved
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Figure 5. Flow chart of the experimental procedure.
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Figure 6. Box plots of decision-making behavioural data.

pressed. Box plots of the decision-making behavioural
data are shown in Figure 6. Figure 6(a) shows the ACC
according to interface complexity: the median ACC
(from highest to lowest) followed the order low, mod-
erate, and high complexity; the mean ACC also fol-
lowed this order. Paired-sample t tests were
performed to analyse the results, and the significance

Interface complexity

(b) Reaction time

level p was set to 0.05. The results showed that the
average ACC between low and moderate complexity
(p<0.05), between Ilow and high complexity
(p <0.001), and between moderate and high complex-
ity (p<0.05) significantly differed. Figure 6(b) shows
the RT according to interface complexity: the median
RT (from highest to lowest) followed the order high,



0.00e+00

Figure 7. Activated brain regions according to source analysis.

moderate, and low complexity; the mean RT also fol-
lowed this order. Paired-sample t tests were performed
to analyse the results, and the significance level p was
set to 0.05. The results showed that the average RT
between low and moderate complexity (p < 0.001),
between low and high complexity (p<0.001), and
between moderate and high complexity (p < 0.001) sig-
nificantly differed. Thus, interface complexity has a sig-
nificant impact on decision-making.

3.2. ERP data

The raw EEG data were processed by ASA software
(ANT Neuro, the Netherlands). The EEG signals were
bandpass filtered (0.1-40Hz) and digitised at 1000 Hz.
The EEG was re-referenced to mastoids, corrected for
blink artefacts using independent component analysis,
and low pass filtered at 30Hz. Baseline corrections
were made for EEG epochs between —400 and 200 ms
after key press by subtracting the average voltage dur-
ing the 200 ms period after key press and segments
containing residual artefacts exceeding +70 uV (peak-
to-peak) were excluded. The corrected EEG epochs
were averaged separately for each participant and
interface complexity level, and finally a grand averag-
ing was performed for all participants.

The processed ERP data showed that under differ-
ent interface complexity conditions, the left frontal
lobe, left temporal lobe and left parietal lobe all exhib-
ited obvious negative waves. Source analysis revealed
that the activated brain regions were mainly located
in the left frontal, left temporal, and left parietal lobes,
as shown in Figure 7. The results observed are consist-
ent with previous research (Ernst et al. 2004; Ahmad
et al. 2016; Sandor et al. 2018; Guidotti et al. 2019).
The F3 electrode in the frontal lobe did not record
clear negative waves and was excluded. Therefore, the
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F7 and FC5 electrodes in the frontal lobe, T7 and P7
electrodes in the temporal lobe, and CP5 and P3 elec-
trodes in the parietal lobe were selected as analysis
electrodes. Additionally, segments within the range of
0~200ms before the key press were selected for fur-
ther analysis. The waveform diagram of the six electro-
des is shown in Figure 8.

3.2.1. Analysis of ERP amplitude

The average amplitude recorded by each electrode in
the predetermined time window (within 200 ms before
the key press) according to varying levels of interface
complexity is shown in Table 3.

A 3 x 6 repeated-measures ANOVA on interface com-
plexity (low, moderate, and high) and electrode (F7,
FC5, T7, P7, CP5, and P3) was performed. Mauchly’s test
of sphericity showed that the electrode data violated
the assumption of sphericity (p < 0.05). To correct for
the degrees of freedom, Greenhouse-Geisser estimates
of sphericity were adopted. The main effect of elec-
trode was significant, F (1.839, 97.485) = 21.821,
p < 0.001, np2 = 0.292. Mauchly’s test of sphericity indi-
cated that the interface complexity data met the
assumption of sphericity (p > 0.05). The main effect of
interface complexity was significant, F (2, 106) = 3.153,
p=0.047 < 0.05, an = 0.056. Mauchly’s test of spher-
icity showed that the interaction between interface
complexity and electrode violated the assumption of
sphericity (p < 0.05). To correct for the degrees of free-
dom, Greenhouse-Geisser estimates of sphericity were
adopted. The main effect of interaction between inter-
face complexity and electrode was not significant,
F (4427, 234.639) = 1.444, p=0.216 > 0.05, 51,> = 0.027.

Figure 9 shows that the amplitudes of the three inter-
face complexity levels were relatively comparable at the
F7 and FC5 electrodes, while there were amplitude dif-
ferences at the T7, P7, CP5 and P3 electrodes. One-way
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Figure 8. Waveforms at the F7, FC5, T7, P7, CP5, and
P3 electrodes.

ANOVAs were performed to analyse the amplitudes at
the T7, P7, CP5 and P3 electrodes. The main effect of
interface complexity on amplitude at the T7 electrode
was significant, F (2, 159) = 3.238, p=0.042 < 0.05, np2
= 0.039. Post hoc analyses using Tukey’s HSD indicated
that amplitude at the T7 electrode differed significantly

Table 3. Mean amplitude at each electrode (pV).

Electrode Interface Mean Standard deviation  Participants (n)
F7 1 —2.5022 2.5361 54
2 —2.6744 1.8144 54
3 —2.4524 2.3559 54
FC5 1 —1.5317 1.3776 54
2 —1.8220 1.2084 54
3 —1.7930 1.5764 54
T7 1 —2.1919 1.4782 54
2 —2.5902 1.5149 54
3 —1.8933 1.2786 54
P7 1 —1.8559 1.1595 54
2 —2.1381 1.1341 54
3 —1.7841 1.1109 54
CP5 1 —1.4356 1.0305 54
2 —1.8709 1.6126 54
3 —1.2976 0.9812 54
P3 1 —1.2063 0.5240 54
2 —1.2885 0.5460 54
3 —-1.0167 0.6062 54
-0.50
= -1.00
=S
éi)
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Figure 9. Estimated marginal average of the amplitude.

between moderate and high complexity (p=0.032) but
did not differ significantly between moderate and low
complexity (p=0.318). The main effect of interface com-
plexity on amplitude at the P7 electrode was not signifi-
cant, F (2, 159) = 1.468, p=0.233> 005, 1,° = 0.018.
Additionally, the main effect of interface complexity on
amplitude at the CP5 electrode was significant, F (2, 159)
= 3.136, p=0.046 < 0.05, np2 = 0.038. Post hoc analyses
using Tukey’s HSD indicated that amplitude at the CP5
electrode differed significantly between moderate and
high complexity (p=0.046) but did not differ signifi-
cantly between moderate and low complexity
(p=0.166). Furthermore, the main effect of interface
complexity on amplitude at the P3 electrode was signifi-
cant, F (2, 159) = 3.349, p=0.038 < 0.05, 7,2 = 0.040.
Post hoc analyses using Tukey's HSD indicated that amp-
litude at the P3 electrode differed significantly between



Table 4. Mean latency at each electrode (ms).

Electrode Interface Mean Standard deviation  Participants (n)
F7 1 —74.70 50.76 54
2 —88.37 55.99 54
3 —69.33 4551 54
FC5 1 —75.33 51.79 54
2 —77.26 51.64 54
3 —73.48 49.90 54
T7 1 —80.00 51.35 54
2 —94.76 42.38 54
3 —84.41 52.77 54
P7 1 —94.26 39.83 54
2 —81.85 39.50 54
3 —102.28 42.50 54
CP5 1 —79.57 4548 54
2 —72.93 4591 54
3 —93.78 4161 54
P3 1 —105.46 52.76 54
2 —87.09 44.25 54
3 —108.09 42.54 54

moderate and high complexity (p=0.034) but did not
differ significantly between moderate and low complex-
ity (p=0.726).

3.2.2. Analysis of ERP latency

Since the ERP components of the experiment were
response-locked and decision-making occurred before
the key press reference point, all latencies were nega-
tive (Roggeveen, Prime, and Ward 2007). These laten-
cies referred to the duration before the key press. In
200-ms time window before the key press, the aver-
age latency was recorded by each electrode according
to interface complexity; these data are shown in
Table 4.

A 3x6 repeated-measures ANOVA on interface
complexity (low, moderate, and high) and electrode
(F7, FC5, T7, P7, CP5, and P3) was performed.
Mauchly’s test of sphericity showed that the
electrode data violated the assumption of sphericity
(p<0.05). To correct for the degrees of freedom,
Greenhouse-Geisser estimates of sphericity were
adopted. The main effect of electrode was significant,
F (3.662, 194.096) = 7.229, p<0.001, n,° = 0.120.
Mauchly’s test of sphericity indicated that the interface
complexity data met the assumption of sphericity
(p > 0.05). The main effect of interface complexity was
not significant, F (2, 106) = 0.411, p=0.664 > 0.05, npz
= 0.008. Mauchly’s test of sphericity showed that
the interaction between interface complexity and
electrode violated the assumption of sphericity
(p <0.05). To correct for the degrees of freedom,
Greenhouse-Geisser estimates of sphericity were
adopted. The main effect of interaction between inter-
face complexity and electrode was significant, F
(7.765, 411.529) = 3.696, p < 0.001, 1, = 0.065.
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Figure 10. Estimated marginal average of the latency.

Figure 10 shows that the latencies of the three
interface complexity levels were relatively comparable
at the FC5 electrode, while there were latency differ-
ences at the F7, T7, P7, CP5 and P3 electrodes. One-
way ANOVAs were performed to analyse the latencies
at the F7, T7, P7, CP5 and P3 electrodes. The main
effect of interface complexity on latency at the F7
electrode was not significant, F (2, 159) = 2.005,
p=0.138>0.05, 1,> = 0.025. The main effect of inter-
face complexity on latency at the T7 electrode was
not significant, F (2, 159) = 1.288, p =0.279 > 0.05, npz
= 0.016. The main effect of interface complexity on
latency at the P7 electrode was significant, F (2, 159)
= 3.464, p=0.034 < 0.05, npz = 0.042. Post hoc analy-
ses using Tukey’s HSD indicated that latency at the P7
electrode differed significantly between moderate and
high complexity (p=0.027) but did not differ signifi-
cantly between moderate and low complexity
(p =0.254). Additionally, the main effect of interface
complexity on latency at the CP5 electrode was also
significant, F (2, 159) = 3.111, p=0.047 < 0.05, np2 =
0.038. Post hoc analyses using Tukey’s HSD indicated
that latency at the CP5 electrode differed significantly
between moderate and high complexity (p=0.041)
but did not differ significantly between moderate and
low complexity (p=0.717). Furthermore, the main
effect of interface complexity on latency at the P3
electrode was significant, F (2, 159) = 3.236,
p=0.042 < 0.05, np2 = 0.039. Post hoc analyses using
Tukey's HSD indicated that latency at the P3 electrode
differed significantly between moderate and high
complexity (p=0.054) but did not differ significantly
between moderate and low complexity (p =0.105).
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4, Discussion

The behavioural results showed that the ACC and RT
significantly differed according to interface complexity.
The greater the interface complexity was, the lower
the ACC and the longer the RT. Jin et al. (2017) indi-
cated that a user's RT would increase as the amount
of information increased. This is mainly because
human cognitive resources are limited (Smalt et al.
2020). When users need to process more information,
there is a shortage of cognitive resources, resulting in
a lower ACC and longer duration needed to reach a
decision. The results also showed that the ACC of
trained participants could be maintained above 96%
as the amount of information increased but the RT
increased significantly. This indicates that excessive
information hinders the effective decision-making of
well-trained participants; that is, there is an upper limit
of image entropy (a measure of interface complexity)
suitable for decision-making.

The behavioural results also showed that for low
interface complexity, the ACC was close to 100% and
the RT was less than 2,000 ms. This indicates that little
information does not hinder the effective decision-
making of well-trained participants, or at least lack of
evidence that there is a lower limit of image entropy
suitable for decision-making. Therefore, the existence
of a lower limit needs to be confirmed by ERP experi-
ments with high temporal resolution.

The ERP source analysis showed that brain activa-
tion during user decision-making was mainly located
in the left hemisphere, which is consistent with previ-
ous research. Euston, Gruber, and Mcnaughton (2012)
indicated that the medial prefrontal lobe is activated
in decision-making. Ungerleider, Courtney, and Haxby
(1998) and Gitelman et al. (1999) suggested that the
dorsal anterior cingulate maps to conflict monitoring
and that the left premotor area maps to movement
preparation. These relationships were also consistent
with the trend of left lateralisation for mathematical
tasks (Burbaud et al. 1999). Differing interface com-
plexity produced obvious amplitude changes 100 ms
before the key press. Kitajima and Toyota (2013)
believed that the cognitive band appears approxi-
mately 100 ms before an action. The operator’s deci-
sion-making task is divided into three parts:
monitoring, decision-making and action execution (Liu
et al. 2020). The decision-making process is completed
before the key is pressed; thus, the potential detected
approximately 100 ms before the key press may be
related to the decision-making process. The decision-
making process can also be divided into early informa-
tion processing and subsequent action selection

(Maksimenko et al. 2020). The temporal lobe is related
to the former aspect of the process, the frontal lobe is
related to the latter, and the parietal lobe is related to
both (Horr, Braun, and Volz 2014; Guidotti et al. 2019;
Zhou and Freedman 2019; Maksimenko et al. 2020).
Consistent with these findings, the T7, P7, CP5, and P3
electrodes in the present study were sensitive to
changes in interface complexity.

The amplitude of each interface complexity level
significantly differed at the T7, CP5 and P3 electrodes.
According to post hoc analysis, the amplitude of mod-
erate complexity was significantly higher than that of
high complexity (in absolute value), while the ampli-
tude of low complexity was generally in between. The
same order was observed at the P7 electrode. The F7
and FC5 electrodes were not sensitive to changes in
interface complexity, and the amplitudes at these elec-
trodes for each interface complexity level were rela-
tively approximate. The amplitude at the T7, P7, CP5
and P3 electrodes for each interface complexity level
showed that the amplitude was highest in response to
moderate complexity. Higher amplitude indicates bet-
ter user decision-making, i.e. more attention, deeper
thinking, and more decisive action (Feng et al. 2010,
Garrido-Chaves et al. 2021). Low complexity, with the
lowest complexity, did not elicit the highest ERP amp-
litude, implying that less interface information does
not lead to better decision-making; that is, there is a
lower limit of image entropy (or interface complexity)
suitable for decision-making.

The latency of each interface complexity level sig-
nificantly differed at the P7, CP5 and P3 electrodes.
According to post hoc analysis, the latency of moder-
ate complexity was significantly shorter than that of
high complexity (in absolute value), while the latency
of low complexity was generally in between. In the
frontal lobe (the F7 and FC5 electrodes), no obvious
difference was observed. Euston, Gruber, and
Mcnaughton (2012) suggested that the activation of
the frontal lobe is related to the ability to extract
memories of corresponding information, which repre-
sents the late stage of decision-making. Therefore,
frontal lobe electrode data were not used as the basis
for analysis. Low complexity, which provided the least
amount of information, did not have the shortest
latency, implying a lower limit of image entropy (or
interface complexity) suitable for decision-making.

The above analyses demonstrate that interface
complexity has upper and lower limits suitable for
decision-making. This enables a new method of inter-
face evaluation that uses image entropy as the indica-
tor and the upper and lower limits of interface
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Figure 11. NPP main display interface.

complexity as the threshold. This method thus evalu-
ates an interface from the perspective of its benefits
to user decision-making and is fast, economical, and
suitable for all design phases of NPP interfaces.

The general procedure of the evaluation method is
as follows. First, the interface should be converted into
an 8-bit grey image. Second, the probability distribution
of the grey levels in the image and the image entropy
should be calculated. Third, the calculation results
should be compared with the threshold of this type of
interface to draw a conclusion. If the values fall within
the threshold, then the interface should be considered
good, and if the values fall outside the threshold, then
the interface should be considered not good. For inter-
faces that fail the evaluation, follow-up suggestions for
improvement are as follows: if the entropy value is
lower than the threshold value, then the interface com-
plexity needs to be increased, and if the entropy value
is higher than the threshold value, then the interface
complexity needs to be reduced.

Interface thresholds can be determined by using
questionnaire or experimental methods. The question-
naire method requires participants to complete a scale
that includes images of interfaces with various entropy
levels. Participants score the questionnaire based on

38| 8 (36750 sec 00.06:07 |T10:45:58 R10:46:45 | IC1 | Malfunction | NoPlot

their own experience, and the scores are used to
derive the upper and lower thresholds of the interface.
The experimental method requires participants to
complete a set of interface decision-making experi-
ments. The experimental stimuli consist of interfaces
presenting various amounts of information. The per-
formance results are used to derive the upper and
lower thresholds of the interface.

For example, the NPP main display interface can be
evaluated. A main display interface of the generic two-
loop pressurised water reactor was designed, as shown
in Figure 11 (at a resolution of 1024 x 768 pixels).

First, a screenshot of the interface was created, and
the picture was converted to an 8-bit greyscale image.
Second, the image entropy function was applied to
calculate the image entropy, and the result was
1.7232. This value is within the interface threshold of
1.28-1.79 (the threshold obtained by the question-
naire method, see Appendix); therefore, the design of
the interface was good.

The evaluation time for a single interface was less
than one minute, and the cost was almost zero. This
method is suitable not only for the rapid evaluation of
a large number of interfaces but also for interfaces at
all phases of design for real-time adjustment.
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The disadvantage of this method is that the thresh-
old value needs to be clarified before evaluation; this
value changes according to design standards and
tasks. Fortunately, the threshold value is easy to deter-
mine because NPP interfaces have specific design
standards and tasks. Future research should optimise
the threshold determination process and construct a
comprehensive evaluation system along with existing
evaluation methods, such as heuristic evaluation,
Hick’s law and experimental evaluation, to comprehen-
sively evaluate NPP interfaces.

5. Conclusions

The aim of this study was to understand the relation-
ship between interface complexity and user decision-
making by conducting ERP experiments. Three NPP
interfaces with gradually increasing image entropy
(interface complexity) were used as stimuli. The deci-
sion-making task required the user to press different
keys based on information provided by the interface.
Six electrodes, namely, the F7, FC5, T7, P7, CP5, and
P3 electrodes, exhibited obvious amplitude changes
during decision-making.

This study provided information that deepened the
current understanding of decision-making from the per-
spective of interface complexity. The main findings are
as follows: there is a specific range of interface com-
plexity (image entropy) that facilitates decision-making.
The performance results and cognitive resource theory
indicate the upper limit of image entropy (interface
complexity), and the ERP results, indicate the lower
limit of image entropy (interface complexity).

This study also proposed a novel method of inter-
face evaluation based on the influence of interface
complexity on user decision-making. The method can
be used to determine whether an interface is condu-
cive to decision-making based on whether the inter-
face image entropy (interface complexity) falls within
a specific range. The method flow is as follows: first,
convert interfaces into grey images, then calculate the
probability distribution of grey levels and the image
entropy and, finally, compare the image entropy with
the recommended threshold. Compared with heuristic
evaluation, this method has the advantages of object-
ivity and consistency. Compared with Hick's Law, this
method is more suitable for complex situations that
require substantial reading and careful consideration.
Compared with experimental evaluation, this method
has the advantages of being fast and low-cost.
Moreover, this method solves the problem of evaluat-
ing interfaces in the initial design phase.

The shortcoming of this study is that although
interface complexity is thought to exhibit the most
appropriate image entropy range for decision-making,
the combined influence of other design factors, such
as colour, layout, font type and aesthetics (Tuch et al.
2012; Lazard and King 2020), on decision-making was
not considered. Aesthetics are important when design-
ing digital interfaces for complex information systems.
An elegant interface with a usable layout may exert
different influences on user decision-making than an
ugly interface with a cluttered layout, even if the two
interfaces have the same level of complexity.
Therefore, future research should focus on the com-
bined influence of interface design elements, such as
interface complexity, colour, layout, font type and aes-
thetics, on decision-making to fully comprehend the
influence of an interface on user decision-making.
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Appendix

Determination of the interface threshold based on
the questionnaire

1. Questionnaire design
A questionnaire for NPP main display interfaces was
designed as follows.
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Figure 12. Reference interfaces.

Subjective evaluation scale No.2 Please rate the interface complexity.
Interface complexity is divided into five categories: very low, i ela 2118 ) Gl 1]

low, suitable, high and very high. Please determine which of e o i

the five types of interface complexities is shown. To facilitate
the evaluation of interface complexity, reference interfaces
with a very low interface complexity and a very high inter-
face complexity were provided, as shown in Figure 12.

No.1 Please rate the interface complexity.

|meez [3¢8. [zs0ieo mos0r 161 Makrcin [ oPi |/

Very low
Low
Suitable
High

= [ o arestten s ot e e Very high

> > > > >

A Very low
A Low

A Suitable
A High

A

Very high



16 W. TANG ET AL.

No.3 Please rate the interface complexity.

[ RS TR L A [ e T A
2%

FREEZE

> > > > >

[38 8 [750e 0507 1104558164645 11 [okiawon | NoPet |,

Very low
Low
Suitable
High
Very high

No.4 Please rate the interface complexity.

[ R TN A I = s e T
dial >, o, R Fow
[ : b |

FREEZE.

> > > > >

[38] 8 [a750e0 020507 1104558104645 11 [oiaton | Moot |

Very low
Low
Suitable
High
Very high

No.5 Please rate the interface complexity.

[ RS T AR A [ e T A
2 2

FREEZE

> > > > >

Very low
Low
Suitable
High
Very high

[38 8 7500 00507 1104558104645 11 [oiawon NPt |,

No.6 Please rate the interface complexity.

> > > > >

Very low
Low
Suitable
High
Very high

[388. [750100 00607 110558104645 11 ket [ Mot | 2



No.7 Please rate the interface complexity.

[ RS TR L A [ e T A
2%

FREEZE

> > > > >

[38 8 [750e 0507 1104558164645 11 [okiawon | NoPet |,

Very low
Low
Suitable
High
Very high

No.8 Please rate the interface complexity.

[ R TN A I = s e T
dial >, o, R Fow
[ : b |

A
A

> > >

[38] 8 [e7500 020507 1104558104645 11 [oiaton Moot |

Very low
Low
Suitable
High
Very high
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No.9 Please rate the interface complexity.

[ RS T AR A [ e T A
2 2

FrEezE [32] 8 [357:50 e0 000607 1104558104645 | IC1 [Malunoton | NaPit |,
A Very low

A Low

A Suitable

A High

A Very high

No.10 Please rate the interface complexity.

[ R TN A I = s e T
adial >, o, A Fow
[ b |

[Freeze [52. 7501m 000R07 104558104815 1 ik o,
A Very low

AN Low

A Suitable

A High

AN

Very high
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No.11 Please rate the interface complexity. No.13 Ple

ase rate t

he interface complexity.
-

< >

L
il

A Very low
A Very low A Low
A Low A Suitable
A Suitable A High
A High A Very high
A Very high

No.14 Please rate the interface complexity.
No.12 Please rate the interface complexity. E

A Very low
A Low
A Very low A Suitable
A Low A High
A Suitable A Very high
A High
A

Very high



No.15 Please rate the interface complexity.
[ K T I e W TET A
[ o, o

= [588 [s750e 0507 1104558164648 11 [okiawon NPt |

Very low
Low
Suitable
High
Very high

> > > > >

2. Threshold determination

Questionnaire responses were obtained from 50 partici-
pants. These participants were all trained graduate students
and had participated in many NPP interface design projects;
thus, they were considered potential expert users.
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Table 5. Questionnaire results.

Question number Image entropy Mode
1 1.7949 3
2 1.8434 2
3 1.6987 3
4 1.9532 2
5 1.6316 3
6 1.9961 2
7 1.2757 3
8 2.0505 2
9 1.1756 2
10 2.1466 1
1" 0.5583 1
12 2.2005 1
13 0.3738 1
14 2.2308 1
15 2.2699 1

For each interface, complexity was ranked as very low (1
point), low (2 points), suitable (3 points), high (2 points), or
very high (1 point). The interface with a mode of 3 points
was deemed to be suitable for decision-making. The results
of the questionnaire are shown in Table 5. The entropy
range of the image with a mode of 3 points was
1.2757-1.7949 (at a resolution of 1024 x 768 pixels). The
questionnaire data revealed that the empirical image
entropy threshold for the NPP main system interface
was 1.28-1.79.
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